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FOREWORD

This final report presents the results of research conducted for NASA
Headquarters under Contract No. NASw-565 dated December 1, 1962. This study
contract was awarded in response to the United Alrcraft Corporate Systems
Center Proposal No. SCP €211 dated May 4, 1%2. The original proposed scope
was revised to cover the research topics outlined in Jection IT of this report.






SUMMARY

In this study, the acceleration hodograph was used to obtain trancformed
equations of motion for a propelled space vehicle subject to the gravitational
attraction of one major celestial body, in two-dimensional space. Dbaslc de-
finitive relations were determined, which are convenlient for thrust progranm
synthesisc and trajectory analysis.

It is shown that the acceleration hodegraph of an orbit (i.e., & hallictic
trajectory) ic a Torm of the liragon. The acceleration limagon and the hode-
graph equalions of moticn enable a direct graphical representation of the thrust
procram, as well as space, volocity, and acceleration coordinates of the tra-
jectory. The hodograph equatlcns describe the cpace vehicle motleon with thrust,
by a continuum of instantarecus orbital hodographs. Consequently, upon thrusti
termination for any reason and at any instant of time, the hodograph equations
provide the subsequent ballistic trajectory directly. Machine solution of the
hodograph equations requires only one integration of first-order, vonlinear
differential equations, while the classical equations require twe integrationc
of second-order, nonlinear differential eyuations.

The space trajectory ovtainable with one class of thrust program has been
analyzed by use of the hodograph equations of motion and accociated relations.
This thrust program, which is being studicd for potential lunar landing appli-
cations, resulted in acceleration hodograph equations of trigonometric for:m.
While the desired clesed-form analytic solution was not obtalned, the current
study results indicate that such analytic solution may yet be achieved. United
Aircraft machine soluticn of the hodograph equations provided excellent corre-
lation with the NASA machinc zolution of the cla.sical equations, except in the
close neighborhood of the terminal point. The terminal point itself is sinpular
in the hodograph trancformation, since the terminal velocity is rzero. In
addition, the current study results have revealed previously unsuspected tra-
jectory characteristics useful for future study, thrust program application,
and system mechanization.

Future advanced study of the transformation technigue has been recommended
in the basic areas of extension of the application techniques, investigation
of the basic characteristics of the application equations, computation and
optimization techniques with hodograph equations, and further analysis of the
specified lunar landing thrust program. In extension of the application tech-
nigues, Tormulation of the three-dimensional equation., analytical treatment of
oblateness effects, and analytical treatment ot drag or other resistive force
effects are paramount. Investigation of the basic characteristics of the appli-
cation equations should result in hodograph generation techniques, so that
analytic integration would be unnecessary. System mechanization techniques
such as situation displays and abort emergency command and control may also
be greatly facilitated by the use of the hodograph equations of motion.






I. STUDY BACKGROUND

The synthesis and analysis of trajectories for powered space vehicles 1is
a relatively new and only partially understood branch of space technology.
While the general equations of motion can be defined rigorously for subsequent
computation by high-speed and large-scale digital cormputers, such equations
and the associated computation processes are usually quite extensive, complex,
and intractable for preliminary design study to determine system feasibility.
That is, the required time and cost of such generalized treatment of the space
trajectory problem area are usually prohibitive for effective system analysis
of new concepts pertaining to new mission requirements. Equally important,
such mechanical treatment provides little understanding of the underlying
criteria and performance characteristics as a function of the physical prin-
ciples. In view of the currently very incomplete analytic knowledge of space
trajectory classes of solution, this deficiency may become increasingly serious
and restrictive in the development of advanced and more versatile space vehicle
subsystems and detailed planning of space mission operations.

In recent years, analytic knowledge of the classes of ballistic trajectory
solutions (or the families of trajectories) has been effectively applied to
trajectory analysis by use of the variation-of-parameters method. With this
technique, a nominal trajectory (or trajectory class) is defined by suitable
orbital parameters. Then trajectories definable within +his trajectory class
nay be studied by considering their variations from the nominal trajectory.
These variations may be due to observational errors, perturbation forces, or
thrust forces. 1In classical celestial mechanics, the conic parameters, which
define planar, unperturbed orbital figures, have seen used most widely. How-
ever, the resultant equations for given space system applications are complex,
and singularities are encountered within regions of practical interest. Con-
sequently, transformations of variables (or parameters) have been proposed,
which "regularize" the equations and provide equation forms which are more
tractable for analysis of space trajectories, e.g., Herrick's "universal"
parameters.

Heretofore, the variation-of-parameters analysis technique has been
effective principally for ballistic motion in the two-body problem formu-
lation, since the nature of these orbital classes has been completely analyzed
and understood. However, the variation-of-parameters method has not yet been
effectively extended to the N-body problems since little is known about the
properties of such trajectory classes.



Upon application of an onboard thzust vector, variable in magnitude or
direction, the analysisl and synthesis® of vehicle motion (within the gravi-
tational field of one major celestial body) are most usually based upon ex-
tensions of the celestial mechanics techniques proven for ballistic trajectories.
Many such analyses and syntheses are based upon the variation-of-parameters
method. However, most presently available techniques are usually deficient in
significant respects, and the results are often approximations at best. These
techniques are especially deficient in providing effective synthesis of a
thrust program to obtain a desired space trajectory. That is, which thrust
programs (or thrust controller functions) and parametric values thereof will
provide the desired trajectory? Moreover, for a finite number of feasible but
different programs (and hence, different sets of parametric values), what
are the relative values of ecach program, and/or the significant tradeoffs
which characterize them? Also, what controller function characteristics are
most significant or critical?

Such considerations led to the study of the velocity hodograph trans-
formation and subsequent development of its synthesis (Ref. 1-10). Initially,
the research phase consisted of investigation of the transformation properties,
resulting in complete analytic definition of basic equations and transformation
mapping relations. Subsequently, the development phase consisted of the
application of optimization conditions and trajectory constraints to identify
the permissible trajectory classes. Unlike many other current space trajectory
study programs, one of the more important aspects of the hodograph approach
is that machine computation is not a bacic element of the investigation. Con-
sequently, analytic rigor can be effectively attained or explicitly éxamined.

The existence of the veloclty hodograph transformation and its utility in
synthesis of impulsive thrust programs led to speculation (Ref. 1, 11, 12)
on the existence of an acceleration hodograph transformation which might prove
useful for the synthesis of continuous, as well as impulsive, thrust prograns.
Such a transformation would enable the consideration of acceleration sensor
subsystems for orbit determination and/or control. In addition, it would pro-
vide an analytic basis for comparison of impulsive vs continuous thrust programs
where these would otherwise meet all dynamics constraints for space trajectorics.
In general, only the basic definitive equations and synthesis process sufficient
to enable the application to study of one specified thrust program have been
developed.

1 Analysis of the generated path, for a vehicle subject to specified constraints,
will provide definitive equations of motion and predict associated data not
Observed directly.

e Synthesis of the thrust program (i.e., thrust vector as a function of time)
for a vehicle subject to specified constraints, will provide a desired
generated path from the synthesized equations of motion.

?



II. COCOPE OF STUDY

The basic objectives of the research study under Contract NASW-565 were
the investigation and definition of the acceleration hodograph and its appli-
cation to the synthesis of space trajectories, with the latter objective
limited to the study of one thrust program clacs. The gravitational potential
field function was acsumed to be due to a regular, spherical celestial body.
Consequently, in this initial study the research effort was limited to two-
dimensional (or planar) motion. However, 1f the study results for the two-
dimensional problem were to be found promising, extension to three-dimensional
space and/or potential fields with harmonic content could be considered in a
subsenuent resecarch cffort.

A thruct progras specified by the Langley Research Center was to be ex-
precsed in terms of the acceleration hodograph parameters, to obtain an
analytic trajectory sclution in closed form. In the given problem, the thrust
vector was always conclrained to be directed opposite to the instantaneous
velocity vector, so as to generate a descent trajectory from lunar orbit to
zero velocity at a relatively low altitude above the lunar surface. This
thrust program application is described in detall in Appendix A,

The thrust progra:n may be specified as a Tunction of time, or of one
or more state vari-blcs. For oxample, a navigation subsystem, which operates
explicitly to provide an open-loop input to the control subsystem, will require
a thrust program defired az o function of time. iHowever, a closed-loop navi-
pational mode of operation willl usc a thrust program defined as a function of
a ctate variable such ao positlional or velocelty error along the path. Although
the open-locp mode 15 the most primitive class of operation, the .esearch study
has been restricted to ceoncideration of thrust programs explicitly dependent
upon time. Obvioucly, ~offecctive synthecis and analysis of such programs can
subsequently be reconcldered for <¢losed-loop operation, if the time-dependent
solutions are known.

The hodograph transformation has been found extremely effective in past
applications because the transformed equations of motion are comprised of
simple Tunctions of the spherical trigonometry. Consequently, all state con-
straints can be defined without tine in explicit form. Then, for example,
the constraints of position and velocity coordinates upon orbital transfer
can be presented graphically by planar geometric relations. However, the
Tormulation of statc variables as a function of time, in the transformed equa-
tions of motion, has not yet been explored comprehensively. As a result, the
research study reported herein has been principally concerned with solutions
obtained upon integration of the acceleration hodograph equations, rather than
the explicit generation of the acceleration hodograph of the powered trajectory.
That is, the integration of the acceleration hodograph equations would provide
the solution as a function of the instantaneous velocity hodograph, which
defines the spacc and velocity coordinates completely.



Y should be noted that use of the hodograph equations requires integration
of first order, nonlinear differential equations only, rather than of the
second order, nonlinear differential equations of classical celestial mechanics.
This fact, of course, appreciably reduces the complexity of the computer pro-
gramming and the required computation time. Explicit generation of the
acceleration hodograph would also define those coordinates completely, by
virtue of the instantaneous acceleration hodograph and its mapping relations.



TIT. BACKGROUND SJMVARY OF DINAMICS PRINCIPLES

Prior to derivation of the orbital equations of motion in terms of
convenient space and velocity coordinates (see next Section), the following
summary of the basic dynamics principles substant iates the analytic deriva-
tion of the orbital trajectory in the presence of applied forces, rather
than for the simple ballistic case alone. This reference m1t°r1&1 is attri-

buted to Reference 12, pp. 18-21.

A D'A embert'° Principle

D'Alembert's principle results in Lagrange's eguations

df<g;]|) %gi - Qi W

where

U system kXinetilc energy of orbital point mass motion
Q = ceneralized force component in the qi—coordinate.

B. Lagrange's Equations for a Tcuservative System

oV

Wazn Qi=——— ,
Qi
az for o conserval ilve .y:fam Wb 1no forccz are derivible from a scalar
potentinl function V, ‘hen Lagriege's eguatlons becore

where
1=U-V = the "Lapgrangian" of the system.

C. Lagrange's Equations for a Velocity-Dependent Potential

The previous parapraph described the system motion when the potential is
a function of the position ccordinate Jonly. Waen the generalized forces
are obtainable from a function w(ql, ql), then the same basic form of
equation is preserved, as expressed by

4 (%Q.—’i) ggf Q (3)



where
L =U-W.

That is, WsV. The term W is also described as a velocity depenient potential.

D. Eggzggggli;gquations for a Dissipation Function

It is interesting, although not directly pertinent in this research
study, to note that

4oL\ ot .
dt(@di) g~ i (1)

where
L contains the conservative potential function,

and
Qi represents the nonpotential forces, such as frictional.

In this instance, Q; is described as a dissipation function, where the
forces may be frictional in nature. This would be the case for atmospheric
drag, for example, or passage through an interplanetary gas cloud.

In the present study, Lagrange's equations for a conservative system
will be obtained by use of the Lagrangian for the vehicle system. As an
alternative, the principle of linear momentum (Newton's Second Law of Motion)
may be used to obtain the orbital equations of motion; i.e., the time rate
of change of the linear momentum of the vehicle rigid-body system is equal
to the vector sum of the external forces.

In the present problem, the gravitational force of attraction due to the
external source is derivable from the scalar potential field function of the
celestial body. The thrust force is provided by the expansion of gases,
accompanied by a change in the vehicle system mass. Since the entire mass-
rate change of the vehicle system (as considered in this research study) is
entirely related to the rocket thrust force, the mass change indicated by
the Lagrangian or momentum treatments will not be present in the final equa-
tions of motion (Ref. 14).



IV. GENERAL EQUATIONS OF MOTION

A, erivation with the Lagrangian

— s rmn

The Lagrangian of the complete space vehicle is

L=U-V=D0 ()% 4 (D)% + MO
2 r (5)

where r, l/, and m comprise the s=t of generalized coordinates qj. The velocity
components are functions of the radius scalar and the direction angle, as
shown in Figure 1. lNote that the Lagrangian (per unit-mass)

ORBITAL
POINT-MASS SYSTEM

CEIESTIAL BODY
- CENTER

REFERENCE LINE
FIXED IN INERIIAL SPACE

Fig. 1 Vector Definition of the Vehicle State in Inertial Space
~ I

['—‘ U“\7=§ E"' )2 + (rl./)z]"l"-e‘ (6)

is indepenient of the mass change, so that mass would no longer comprise a
generalized coordinate in this specific mass formuwlation.



For the r-coordinate: %LF-: mrf/z—.,u;%

oL _ .
ai-mr

%((‘%‘;—)=m? +mr

mr+mr-mrp? 4 %2”—2 Q
or
ib.' TR - Q
(m)r+r ry +1‘r.%-ﬁr-
For the ) -coordinate:

QL.
oV 0

i i): . . P 200
dt<@z’j mraA42mrigtmr?y

Lmetp+2mriv+mrd) = Q,
or . Q
m [ . o s -_y
(’rﬁ)'V +2rpy+rp= o
For the m-coordinate:

& bl r] + 4

=0

IR

so that

nof—
—

()2 +(rz'/)2]+ Ke=qpn

10

(7)

(8)

(9)

(104)

(10B)

(11)

(13)

(144)

(14B)

(15)

(16)

(17)



Consequently, although the vehicle system mass changes with timo, L
no new information ic provided. That 1is, Equation 17 shows that Q= L,
although the mass-ratce change 1€ conctrained to the mass-flow law
arbitrarily cclectabls. For example, in the lunar landing problemnm
application herc, the mass-Tlow rate is constart. Then

m=k (18)
m t
dm: k df (lQA)
0
Mo (198)
or
m=mo+kt, (19¢)

where k is negative in cign.

Mecording Lo the momeniim equation for rocket motion (Ref. 15),

mA(Jz—ﬁ'\Vg =T (20)
so that .
o mAa, =~Mvgy (21)
But in general, onu=—mng (22)
f=ms +ms (23)
so that frE Qrzr'n;_ﬁwgr ‘ol)

-Q .. .
f,j—rlémru—mvgv (25)

1L



Conscquently,

2 Mo (m), =P
r-ry +¢‘£'- <m>"gf m (Loc)
210+ 0=~ )7 B -
The resuliant vector eguation of moliorn ic then seen to be
Aa=% (r ry +vu§)|+<2rz/+rz/>J (26)
B. Derivation with the Momentum Principle
According to the priuciple of linear momentum,
f= & (mv)
(27)
Also, in vector form,
T= )T+ ()] (28)
mV=m?=(m?)T+(mrz'/)T (29)
f=(MiT+mrT + mryy) +
+ (M7 +mroj+ mrp] — mn)?T) (308)
f=(mr+mr-mro 3T+ (hrp+2min + mn)) ] (30B)
f [/m\e s
ﬁ-[<m)r+r ru]|+[< )ru+2rz/+ru]1 (31)

It is seen that Equation 30 is the vector form for Equations 10B and
14B. Consequently, the derivation results with the momentum principle
are identical with those from the Lagrangian.

12



V. VELOCITY HODOGRAPH PARAMETERS OF AN ORBIT

Although the velocity hodograph parameters of an orbit have been previously
derived and discussed at length (Ref. 1, 4, 5), the basic formulation of thesc
hodograph perameters will be recapitulated in standardized symbology deemed
more suitable for extension to the acceleration hodograph.

Tet us congider the total energy equation for the vehicle rigid-body
csystem in orbit, treated as a point-mass:
2
mv
E=§ + V(r) (32)

For the inverse-squarc potential field of gravitational attraction,

V (r)=—Hm (33)

r
so that

_mv® _ um
E=0F - KO (30)

is the instantancous energy cguation of the orbital system, such that E, wu,
v, r may be functions of time, but is always constant. If the system is
concervative (or in ballistic flighﬁ), then E and m are constant. As before,
let us resolve the velocity vector v (see Fig. 1) into the orthogonal comn-
ponents of a rotating polar coordinate system with origin at the vehicle
center-of-mass, so that

E= M (v, 2 4 vf) — KD (34

or

£=5 [ + |- HP

(3kc)
Since, in thae conservative system,
J/ EMIVh = constant (39)
let
CopMm - p - fh (36)
D rvy e
Then
2E _ . 2 2
m Vr +Vn 2CVn (3)4D)
or

13



This equation defines a circle whose center is located at the distance ( along
the positive Vp-axis, with radius

]
2\2
R=<%1—E+C ) (37)
It is most convenlent to refer tne direction angle to the radius line

through perigee passage (il.e., closest approach to the celestial body) .
Consequently, for an instantaneous orbit, and its hodograph,

vr =7 =Rsing (38A)

V=1 =C+Rcosp (390)
and 1

v=(C%+R?+2CRcosh)? (h0)

Note that vy and vy, are defined in inertial space, although the true
anomaly ¢ (referred to the perigee passage for the instaneous orbit) is used
to describe their scalar magnitude (as shown by Equations 38A and 394). Con-
sequently, the energy equation can be presented in terms of the instantaneous
parameters (C,R) and the tre anomaly ¢. If the system is conzervative so that
E and m are constant, then che angular momentum J is constant, as noted pre-
viously. As a result, the parameters C,R are also constant terms which can be
used to define the orbital velocity vector.

The locus of the velocity vector terminal point with the velocity vector
initial point fixed_in space describes a curve defined as the velocity hodo-
graph of the orbit.t In the middle of the 19th century, Hamilton and M&bius
showed that the velocity hodograph of the planar orbit is a circle in inertial
space (Ref. 16, 17). Also, the velocity hodograph may be presented in com-
plete three-dimensional vector notation (Ref. 18). Although the hodograph
parameters have here been defined by use of a rotating polar coordinate system
with its origin at the vehicle center-of-mass, the hodograph in inertial space
is shown to be defined by these same parameters, upon reference to Figure 0.
In a rectilinear coordinate syctem with origin located at the celestial body
center-of-mass, and the apsidal line used as the direction angle reference,

V= vnsin¢—vr coscf):Csinqb (41)

Vy =V coscj) +vsinch =R +Ccosch (42)
so that
vy? +Hw-R?=C? (43)

1 The unabridged definition (Webster's New International Dictionary, 2nd
Edition Unabridged, G. & C. Merriam, 1958) of the hodograph of a variable
vector is as follows: The locus of one end of a radius vector (the other
end being fixed) that represents in magnitude and direction the rate of
change of the variable vector.

14



Fig. 2 Velocity Vector Definition in Inertially-Fixed Rectilinear Coordinates

Conversely, note that
v,=stmq5-vxcoscf>=R sinch (38B)

Vi =Yy coscf> + v, sin cj) =C+R coscf) (39B)
so that

2 _ VY. p2
Yy +(Vn C)=R (3LF)

In rotating polar coordinates, the velocity hodograph of an elliptical
orbit appears as shown in Figure 3. In general, all conic sections of orbit
are defined by the hodograph equations without change, as shown in Figure b,
This polar velocity hodograph has been useful for analysis of the orbital
transfer problem (Ref. 2, 3, 6, 7, 8, 9). Some basic mapping relations for
the hodograph transformation are presented in Table T.

15
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TABLE I

VELOCITY HODOGRAPH TRANSFORMATIONS FOR AN ORBIT

Vp=C+Rcosch
P=y
6=

- R
€=T
o'
. (CZ_RZ)%

n

0

0'(1-e2)=€'z

(36)

(37)

(38)

(39)

(Lk)

(k35)

(he)



VI. HODOGRAPH EQUATIONS OF MOTION

The general equations of motion (Eq. 10C and 14C, or &6) are now to
be expressed as functions of C,R, ¢ (and the time-derivatives thereof)
rather than r, Y/ (and the time-derivatives thereof). From Equation 3CA,

r =Rsinq,‘>+RCf5 cos (50)
and from Equation 39,

h'/+r1)=C+Rcoscf>—Rcf)sinq5. (51)
Then, from Equation 10C,

O, = -E"f; =(R sinq_‘; + Rcf.DcosqS)—(Cl'/+Ri/ cos¢)+ Cy (52n)

and from Equation 1LC,

A\ap® FFny=(C'+Rcoscj>—Rci>sinq5)+(R1)sincf>), (53n)
Since
v=¥+ o, (54)
U=V + Cb (55)
so that
AN P % =R sincb—-R\‘Y cosqS (52B)
AV T %= C+F'?coscf> +R\ifsinq5 (53B)

respectively. In vector form,
?=%=(R sincb-R\if cosqb-—C DT+(CHR cosqS+R\ifsin¢)]' (568)
or

# =(Na,~CONT+(Aap)T (563)
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Note that the gravitational attraction provides the Cl/-term in the
| -direction,

In a rectilinear coordinate system,

dy = Qp Sin ¢—arcos¢=ésincf>+R“lf+Cf/cos¢ (57)

Gy =0p cosq5+orsinc]5=é+écosqb-CDsinqS (58)
so that

(ay-RYT +(a,-R)*= C*+(COF- (59)
Conversely, note that

or=oYsin¢-ox cos¢=§sin¢-R\ifcosqS—C1) (60)

an = 0y cos P+ay sin @ =C+R cosp+R¥sin @ (61)
so that

(ap+ LY +(ap-C)= (RF+(RYT - (6)

A. Acceleration Hodograph of an Orbit

As shown in the previous chapter, the velocity hodograph of an orbit
is a circle. What can be said about the acceleration hedograph of an orbity

For the ballistic trajectory, the acceleration due to thrust is zero
ice., Ag, =Nap = 0 ) so that Equetion 56 reduces to
r n

F=(-CON 2(-C - (63)

In this case, the true anomaly rate{i)is identically the radius direction
angle rate v , since the apsidal lipe'qf (to which the true anomaly is
referenced) does not change in the bgllistic problem (neglecting oblateness
effects, of course). In terms of the acceleration polar scalar,

p=Ce- (64)

However, it can be shown by use or mquation 36 that

¢=(&)vn2=f—L(C+R cosp)? 65)

20



so that

,0=92(C+ R cos d))2 (643)
m
p=€(1+e cosch)2 (6kc)

This equation is recognizable as a form of Pascal's limagon (Ref. 19, 20)
defined by

P=c+d cosqb (66)

or

The limagon is described, and some properties of the acceleration hodograph
are derived from the basic form of the limagon, in Appendix B. Consequently,
the acceleration hodograph can also be used to represent all conic sections
of orbit, as shown in Figure 5. OSome basic mapping relations for the
acccleration hodograph transformation are shown in Table II. However, the
simpler hodograph figure and mapping relations shown in Figure 6 arc more
amenable to study and interpretation of the acceleration hodograph character-
istics.
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TABIE II

ACCELERATION HODOGRAPH TRANSFORMATIONS FOR AN ORBIT

p=Cd (64)

Cvn= 4P (68)
Cy =B tang)' (69)

Vr _1-utangd
n~ 2(u+tand) (70)

qb=orc tan [—1—%] (71)

u+tan
es (2$inq5 cot@'—cosqb)-1 (72)

q _2(2- cotd)tan@)
“4csc2p—(tand’ +2cotqf>)2F (73)

_ 2 L
P* 2-cotg tang’ \/; (74)
| ll
C=(up) (1—%?0'1—9)2 (75
4

R=(u0) mnecscd) (76)

[2(2- cotchtang’ )j



ACCELERATION PLANE — SPACE PLANE ACCELERATION PLANE —= VELOCITY PLANK

P:%:Cé P:-Lcﬁﬂ.)i

tang’=2 tang

/ Vr £ )
t = e { (")
an@=2 ( Vn) ’

Fig. 6 Acceleration Hodograph Summary
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n Variation of the Direction Argle Reference

Tn the basic definition of the hodograph =nd referring to Figure 1, "he
angle between the radius vector line (defined vy N ) and the reference line
fixed in inertial space is the directlion angle Y . The hodograph is only
defined for a Tixed reference line. TFor orbits, the apsidal line directed
to perigec passage (defined by\yﬁ) may be selected as the most convenient
reference line. In general, however, this apsidal line will change its
orientation in inertial space whenever thrust i1s applied. Consequently, the
hodograph parameters are only defined, in the case of a continuous thrust
vrogran, Tor a continmaunm (in time or space) of instantaneous orbital hodo-
graphs with the parameters C, R, andxy'as functions of time. The apsidal line
orientation'qf is ceen to be a function of C anc R upon consideration of the
definitive equation for the parameter C of an instantaneous hodograph:

H (36)

C::?VE
Then
r= pv(C2 +CR cosgﬁ)" (79)
F=—IL(C%+ CRcosQS)Z(ZCC +CRcos qs +CI5\’cosqb —CRC.;Ssin ¢) (8on)
or
-2 . . . .
vp =-H(Cv,) (CC+Cv, + CRcoscf)—Cvrcf)) . (80B)

Dut d) - v\ (81)

5o that

C )2 . . o . Vn"c _ ’ : 8

(Cvy v = = W |CC+Cyp+ CR == |- Cy, +Cv, ¥ (€28)
Since, by Equation 30,

. (Cvp)
Cv-= 8
m (83)
ther 3 = 3 - . : vanZ \
e (Cvp) vy =+(Cvpy) v - |CC+ Cy+ CR|——= [+ Cy ¥

(82B)
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or

CRC +RC v, + CRv,~C?R+CRv¥=0 (84)
Therefore ) .

ap-C (i), R (wn=C |

-\Y—C( Vr )—’- R ( Vr (854)

or

g (R R o) e

¢. Transformation of Parameters from the Time-Domain

The hodograph equations of motion were previously defined by constants,
and by parameters which are time-dependent. However, if these parameters are
constrained so that they are functions of space coordinates rather than time,
the parameters and the consequent equations of motions may be transformed
from the time domain of formulation. For example, assume that C and R are
functions of the instantaneous true anomaly ¢, by suitable constraint of
the thrust vector magnitude and direction. This condition could be provided
by an idealized closed-loop control in response to an inertial sensor -ub-
system and guidance controller. Then

C=g—?=g%%? (874)
so that

G= Cych (873)
and

R=g—§=dR %SF (82a)
so that

R= R¢¢.D (88B)
Also

qs: %; %:& (C+R C05¢)2 (89)

Utilizing these transformed parameter variables (C¢, Rg ), the hodograph
equations of motion may be directly transformed.
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This change in the independent variable from time to a space-coordinate
suggests itself as a potential technique for synthesis and analysis of space
trajectories resulting from closed-loop guidance and control.
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VII, LUNAR LANDING PROBLEM

The hodograph transformation will be applied to a thrust program class
of immediate interest to the Langley Research Center, for possible use in
the lunar descent and landing problem of the manned Apollo mission. In
particular, a closed-form (or analytic) solution was desired. Although such
solution has not been attained, the resulting equations should enable con-
siderable insight into and understanding of the characteristic performance
of this trajectory class.

In this problem, the magnitude of the thrust vector is always constant,
while the thrust vector is always directed opposite to the velozity vector.
The rocket fuel mass flow rate is constant, so that

m=mg +kt (19¢c)
as shown previously.

As noted in Appendix A, the thrust program would be applied at the
perigee passage on an elliptical orbit about the moon, as shown in Figure 7.

A. Basic Hodograph Equations of Motion

The thrust and velocity vectors are related as shown in Figure 8.

LOCAL HORIZON
(in direction of flight)

LOCAL VERTICAL

Fig. 8 Vector Definition of the Lunar Landing Thrust Program
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THTUIAL
ORBITAL TRACK

LANDING TRAJECTORY

TIITIAL ORBIT

Fig. 7 The Lunar Landing Trajectory
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Tr T ) (T vy
==tz - —sin@ =-|—|—
Bar=-m m 6 mil v
T T Ty\v

Aan=——"-=——cose=-—(-—)—ﬂ-
m m mi v

Cousequently, by use of Equations 52B and 53B,

Nay =- H}) %5=R sin p -RW¥cosp

or

- (l) Rsin qb =Rsinq5 -RW¥cos 4) ,

m v
and
A Tiva . . .
Op=- r—n- T-C+RCOS¢+ R\I’SWICIS
or
T C+Rcosq5 . . .
_(.; —v——-C-l-RcosqS-i-R\YS'anD-
Therefore
T _ Rsind—RV¥co
mv ni?sincf) SSQ
and

T C')-I—F'%coscb+R\ifsingQ

mv C+Rcos
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(914)

(908B)

(90c)

- (91B)

(91c)

(924)
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go that, upon combining Equations 92A and 92B,

RC sincﬁ+W—CR\.Ycosq5—R"\ifcosﬂ>
-GR sinh+RBsingfrCosh+ RV sirp (938)

(ﬁC—(’JR) sinqS—R\if(R+Ccosq5)= 0] (93B)

(% )smcb -
(C)-FcosqS )

Consequently, substituting Equation 93C for \I’ in Equation 90C,

~(L)Rsingp= R singAR +Ccoscf)-sinchcos(RC - CR)

R+Ccosd (99D)

—(I—)R R (R+C,cosﬂ> C,eo/)+C(Rco@1

mv “R+C coscf) (90E)

_ T . R+€ cosdd
mv = R+C cosQ (90F)

The same result ( i.e., Eq. 9OF) would be obteined upon substitution of Equation
93C forqj in Equation 91C.

The general expression (Eq. 86B) for\F may be equated with the special
expression (Eq. 93C) to obtain

(—g—%)sinqs __C(2C+Rcosq) Rco% (94A)
(%—)+coscf> CRsing Rsin
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Reduction of Equation 94A results in

¢ .. R (94B)
C R+2C cosgb

The combined use of Equations QOF and 94B provides

T _C (954)
my C
The use of Equation 94B with Equation 93C provides

- _¢|2sin (93D)

R

Equations 93-95 comprise the basic hodograph equatiouns of motion for
the lunar landing problem. These equations, together with various poten-
tially useful auxiliary equations which were obtained from them, are
sumrarized in Table ITI. In addition, the following general equations of
the basic hodograph theory are useful:

U=+ (55)
v =¢CL—(C+Rcos§IS)2 (100)

vz=R2+C2+2RCcosqS (101)

Equation 95A or 95B in Table ITI provides the following vector equation for
the lunar landing problem:

Aa =-(§C-) (VT +vp]) (102)

The trigonometric character of the equations in Table III enables a
simple geometric construction which Presents these hodograph equations of
motion, at any given instant of time. The definitive triangles are shown
in Figure 9, with all equation terms suitably identified.

The hodograph equations of motion may be treated in two different ways,
to obtain trajectory solutions:
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) 53___.- R . R+Ccos ot
"C  R+2Ccosp  R+Ccos®

W=-C 2sing @-\ (252)
. R
I R C CSin = .FE..._C_} .\3.:{5-9.\ ?un - ) (‘}3",:
\yz(_ﬁ"(f) R+Ccos$ _{ R CJ v \R C/ (d) 9}
¥ = (—2-+%) tan (931)
cos @ =- -'2- (% + %) (96)
(I_)vzcc_RR= E) v (90595%)
m C
. . |
(1)2(21) SR+ 4+ 2RE cos (950;984)
m C
O Tf. €
-
RR= < -V (99)
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3 y
2
1
g
01 = ¢ i
02= C
15 = R
ah = R T \
ot e pen 8
03 = L
ok = Vv
% - R+2C(cosp-singh) = & (RY-R)
17 = RY-R

Fig. 9 Geometric Representation of the LLP Hodograph Equations of Motion

34



1. Integration, to obtain the continuum of instantaneous
hodographs as a function of time.

2. Generation of the hodograph (or trajectory mapping)
in the "acceleration plane.”

With integration, only one integration is required, since the instantansous
hodograph completely defines both the velocity and space coordinates. While
analytic integration to obtain closed-form solution is highly desirable,
machine integration is currently most common in general synthesis work. 1In
this latter case, programming and machine solution are expedited with hodo-
graph equations, due to the need for only one integration rather than the two
integrations with the usual equations of motion.

If a general formulation of hodlograph generating theory (or differential
geometry) were available, the direct use of the hodograph equations would be
obvious. However, in the absence of such gerneral theory, the hodograph equa-
tions can only be studied, relative to possible generating techniquss, by
the elimination of time as a variable. Consequently, the hodograph equations
mist be transformed from the time-domain to the "acceleration space plane."

B. Transformation of Lquations from the Time-Domain

Let us consider the hodograph equations in Table ITI. All equations
in which mass (m ) does not appear can be expressed as differential equa-
tions in C, R, and (P (or V), as presented in Table IV.
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TABLE [V

TIME-FREE HODOGRAPIH EQUATIONS OF MOTION
FOR TdE LUNAR LANDIN3 PROBLEM

dc dR  __dR+d (16
R+2Ccos§15 R+C cos 3)

d\V =-dC (M) (10kA)

or

v {98 i {-9)3
4= (QRB-+%Q)t0n¢ (20%c)
cosch=- (g—g +%) (105)
cac—mm({)ac (106)
(%)2 dR)*+ (dC)* + 2(dR)(dC) cosch (107)
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However, the specific energy equation is

~r 2

g4
so that

§=VQ+%
But

vV = v(vb+ vp)

so that, by use of Equations 111 end 11k,

I ;)_ e
E=vv \ri;z = vy J\.b vV

P
Since
- _ T

WD- -m
then

o1

E = <m)v
or

E =Rl'-:v2-CC=—(——CC—>V2

Also, the total acceleration may be expressed, as follows:

ER {% + %(—‘(9} ~ [—;% +C1}sind
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At this point, an interesting energy relation is noted, which eliminates
time in explicit form from the energy variation eguation. By definition,

E-E (117)

m
so that

2 _E _Em

3 -£ "'—H$5 (113F)
Consequantly,

E Em_. |[T).:

E_ - S R (113G)
so that

dE . dm_ [T, (119)

E m B

Tf the term ( E Y were constant or a fuaction of path length (s ) only,

then an integral relation between £ ,M , ;i s would be available. At this
“"QW~LbL°ﬂ of (E? } ave known. Also, according

~

1

time, no knowledge of such
to Fguat 100 ll C, an integr 21 relalior s2d § would be available if
the term ( were constant or 2 fuubfloﬂ of path lenzth only. This con-
dition and resulting integral relation were used 1n References 21 and 22.
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Prior to machine couputubion, in was sppuvent, wpon referencs to the
general hodograph equitilons Tor ci orbit (Tadle T) or the lunar landing
problem equations (Table TITY, thet the terminal point of the spscified
lunar landing problem defines ain orbit which is indeterminate in the hodo-
graph transformation. At the terminsi point of the trajectory, the velocity
1s zero and the thrust is discontinued. Then the terminal orbit is a
straight line frox the terminal point (or "apogee") to the gravitational
center {or "perigee" ) ard such a path lies on a radius from the gravitational
center, with zero acgular momertum. Then C—e00 (qu 36 or 9SA) and
R—00 (Eg. 37 or SiC).

Remembering that the nodograph transformation regularizes all points
in the region of solution for real orbits (i.e., nonzero velocity and
angular momentum), it is clear that the transformation has a singular point
of solution for this class of "orbit" which passes through the attracting
center. Nevertheless, the machine solution from the hodograph equation
program shows excellert correlstion with the solution from the classical
equation program, until about 280 seconds (e.g., see Fig. 10). Note that
the computing errors implicit in the machine Programming and solution of
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the classical equations of motion have not been considered, since they
are not known by the research staff. However, the terminal point of
that solution could be at a trajectory time from 282 to 283 seconds, the
apparent termination point of the trajectory.

Two sets of solution data have been reduced to graphical form. The
first set consists of those trajectory variables which are provided by
either the classical or hodograph equation problem statement, as follows:

1. U r vs t (Figure ng
2. Vs WVm vs t (Pigure 13
3. VY\"I‘\ Q ve Vv (Pigure 1h)
Yy, v vs ) (Figure 15)

5. 9 vs V) (Figure 16).

For general information, these characteristics are presented here
without comment. In Figure 13, note that the ordinate scale for the
radial velocity (vr) is five percent (1/20) of the normal and total
velocity scale. The second set of solution data consists of the trajsctory
hodograph variables which are provided uniqusly by the hodograph equation
problem statement, &as follows:

1. C ve ¢ and R v R , for 0-25C zec (Figure 17)

2. € Vs C and R + R , tor 250-280.45 sce (Figure 18)
3. C}S ,\Y Vs ¢ (Figure 19)

L. ¢ vs R for 0-14 cee (Figure 20)

5. C s R ror 1L-253 -cc (Figure 21)

6. C vs R ror 253-260.h45 sec (Figure 22)

7. R vs C (Figure 23)

These characteristics are only a few of those possible for study. Neverthe-
less, some very interesting and new statements sbout the trajectory prop-
erties can be made, based upon these characteristics. In general, note that
the hodograph solution provides direct definition of the instantaneous orbit
at each point of the space trajsctory. Consequantly, upon any contemplated
or inadvertent shutdown of the propulsion system enroute, the resulting
orbital trajectory of the space vehicle would be directly available for
emergency decision or alternative thrust programuing.

The characteristics of CvsC andﬁ vs R (Fig. 17 and 18) were provided
for possible study of the eunergy state changes, comparable to use of the
phase plane in the analysis of nonlinear oscillations (Ref. 23). For example,

and R are specific accelerations rather than potential energy terms, while
C and R are specific velocities which are indeed kinetic energy terms.
Consequently, the energy state changes may possib%y be fruitfully studied
in analytic form by use of these characteristics.

INote that the hodograph transformation is intimately related to the
Hamiltonian function and its coordinates.
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At this point, consider the variation of the true anomaly rate (gb )

and the apsidal line rate (\P') wiﬂnqb, as shown in the polar diagram of
Figure 19. As seen upon reference to the tabular excerpt of values on

Figure 19 for 11.9-12.25 seconds, both(i)and\y'(of opposite signs) pass

through very large values (e.g., 13.93 radians/second at 12.07 sacoads).

In essence, the instantancous hodographs appzar to be "rotating" (or flipping
over) about 180 degrees. That is, within a very small time interval at about
11-13 seconds, the space vehicle has changed phase position in its instan-
taneous orbit from the proximity of perigee to the close proximity of a; ogee.
As will become apparent later, the resulting change in vector geometry has

a profound effect upon the mathematical description of the trajectory dynamics.

The characteristic of C vs R is the most immediately interesting of the
new data provided by the hodograph equations. Examination of Figures 20-22
shows that two time regimes provide apparently different characteristic
behavior:  the initial trajectory period tfrom O to 14 seconds (Fig. 19),
and the "midcourse/terminal” period from 14 seconds on (Fig. 21 and 22).
Tn the initial period, R changes from negutive to positive valus in a very
small time interval. The characteristic curve bears a striking resemblance
to a switching function, such as encounterec in electronic systems and
components. Note that the characteristic curve from O to 11 seconds pro-
vides a mirror reflection (about the C -axis of symuetry ) which comprises an
extension of the linear characteristic from 13 seconds on. Note also that
this characteristic for the "midcourse/terminal" phase is remarkably linear,
with the slope of the characteristic equal to unity. This initial charac-
teristic leads obviously to spsculation on its nature.

It appears that, as the space vehicle deparcts from perigee of the
initial orbit, the positive radial velocity must be overcome, by the negative
radial acceleration due to thrust (as indicated by negative R principally).
However, it is not readily apparent precisely why the abrupt transition in
sign of R occurs, although it is undoubtedly directly related to the basic
vector direction change (relative to the local horizou) of the velocity (and
consequently the thrust vector). Thus it is seen that this "switching" in-
terval is just that time interval for change in the true anomaly of the
instantaneous hodograph, described previously in the discussion on Figure 19.

On the basis of these observations, the following postulate is suggesteds:
If thrust inception occurred at apogee rather than perigee, the "switching"
phenomena would not be observed. If this postulate were confirmed (e,g,, by
machine solution), then the following further observations would become even
more significant to analysis and use of the specified thrust program.,

At this point, attention is called to the variation of the flight path
angle (B ) with time (Fig. 13) and with the space angle (Fig. 16). 1In the
selection of the T and M values (see Appendix A), suitable terminal conditions
for the final landing on the lunar surface were undoubtedly desired. If
final landing were essentially along a lunar vertical, then achievement of
a flight path angle ( © )z’ﬂ7@ is desired as soon as feasible, to enable
broper vehicle attitutde orientation. It is suggested that an earlier

56



attainment of this flight path angle might be provided by inception of this
thrust program at other than the perigee passage point. In the present
parameter selection, the path angle changes from about 45 degrees at 280
seconds, to 90 degrees at about 283 szconds.

The é vs ﬁ characteristic for the "nﬁdcourse/terminar' phase is remarkably
linear to the limit of machine solution accuracy, &s noted above. Consequently,
this characteristic may pbe formulated very accurately, in this trajectory
phasz, by the following equation:

C=R+K (119)
vhere K==— 25 fps®. From this, we obtain
C=R+K(f"fi)+‘(ci‘-Ri) (120)

where C; and R are corresponding given values at the initial time reference
t; (e.g., t; may be selected as 14 secords on the trajectory program). These
additional relations may enable further insight into analytic solution of

the original, complete lunar landing hodograph equations (see Table IIT), or
be used directly for analytic solution form valid for most of the trajectory.
Due to the lack or further study time, such investigation has not been
attempted.

Finaily, the churacteristic of R vs C 1s presented in Figure 23. The
significance of this char%cter%stic stems from the orbitzal energy diagram
(Ref. 4) represented by R°vsC®, as shown_ in Figure 2L. The R vs C charac-
teristic is presented, rather than R%vs C , Tor concise presentation with a
reduced scale range. Tt is seen that in the initial trajectory phase (up to
t 12 seconds), the instantaneous orbital energy decreases; in the "midcourse/
terminal" phase (t >12 seconds), the instantaneous orbital energy increases,
approaching zero snergy represented by the zero sccentricity line (shown
dotted in Fig. 23) for the terminal point. In order to be consistent with
the previously suggested postulate, this characteristic would not show
decreasing energy for thrust inception from apogee. Note that this charac-
teristic provides direct qualitative evaluation of the instantaneous orbital
energy along the trajsctory, with only a scale change required for direct
quantitative evaluation.

The computer program for the hodograph eguations of motion, together

with trajsctory run data, is available at Corporate Systems Center for
future reference and use as desired.
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VIII. TRANSFORMATION THECRY AND CHARACTERISTICS

The basic equations of the scceieration hodograph transformation have
been determined, and one problen app..ication has been studied. However, the
scope of the transformation theory required for complete application and use
is far greater than covered by this initial study effort.

First, let us consider the ceneral statements possible about the trans-
rormation theory established as of this time. The equations of motion, when
transformed by use of the hodograph variables, are principally comprised of
trigonometric (i.e., transcendental) functions (see Eq. 52B, 53B, 56A). However,
the functional forme of the equations are qulie simple in structure, and of
low differentinl order =nd of firct degrec. Conceguently, both anzlytic treat-
ment or manipulation ané machine corputation are significantly facilitated.

For example, it wac found that the computer programmers found the trans-
formed (i.e., hodograph) cquations mch simpler to program and check out,
largely due to the need for only one integration compared with two integrations
required for the original (i.c., nontransformed) equations. 1ne ease of
applying diagnostic procedures to tect the program can become extremely
importunt in lrrge cond progroms for uss In large Joace system miscion
and trajectory computatlion and simulation.

Second, the transformed cquations of motlon are regularized with respect
to all classes of real orbit. That is, no singularities are encountered
within the real regions of solution, such as are endountered with a conic
parameter formulation of the orbital trajectory or perturbation therefrom.
Consequently, the variation-of-parameters method of deseribing the trajectory
class and itc perturbation equations can be elffectively used without re-
striction or special conditions required. While this statement is also appli-
cable to Herrick's "universal variables" and resultant equations, this hodo-
graph transformation results most directly and naturally from the original
equations, without mathematical manipulation to obtain mapping functions.
That is, the hodograph parameters have direct physical significance, enabling
the direct mapping of all trajectory characteristics over into the space or
velocity planes.

Third, the hodograph variables and the transformed equations of motion
can be directly presented graphically, due to their geometric properties.
This characteristic property has been effectively demonstrated by the geometric
presentation of the instantanecus velocity and acceleration hodograph terms
of the lunar landing problem (see Fig. 9). This geometric presentation should
be generally possible, since it is also true for the impulsive thrust analysis
(Ref. 2). This graphical interpretation appears of outstanding importance,
second only to the poscible ease of analytic treatment of powered trajectories.
The need for readout and display of the significant characteristics of' a tra-
jectory has become most critical, in this era of extremely complex systems
and attendant computation requirements. For a completely automatic system,
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an appropriate display is essential for xonitoring and diagnostic test
procedures for large-scale or hign-speed machine computation.

For an integrated ma:-machine systenm, an effective display of tra-
Jectory characteristics appropriate for the optimam use of the human
operator's decision capability is mandatory. The hodograph transfor-
mation provides problem statemert, treatment, and solution with analy-
tic rigor, while similtaneocusly erabling the real-time display of all
essentlial performarce characteristics provided in the most effective
relationships, as required.

Fourth, it is apparent that the specified mass variation function
(or "law") has a profound effect upon the possible analytic procedures and
application utility. The problem application considered in this initial study
program specified that the vehicle mass be a function of time. Consequently,
analysis of the hodograph equaticns of motion required the integration pro-
cedure for complete sclution, rather than the differential geometry approach.
As mentioned previously, the differential geometry analysis requires the
elimination of time explicitly ac the independent variable. Since this con-
dition could not be met with the stated lunar landing problem, only analytic
integration was attempted. Tor thic reason, the differential geometry
techniques were not studied in greater detail. If the mass variation were a
function of space, velocity, or acceleration coordinates, then the use of the
differential geometry approach would be available.

Thic one point, i.e., elimination of time {rom the hodograph equations,
is so basic to the potential use of the hodograph transformation, that its
feasibility is discussed in greater detail here. The velocity hodograph
transformation has been quite powerful in providing new solutions for the
lmpulsive thrust program, because time 1s not present in the problem
equations. (llowever, it should be noted that time relations can be provided
as auxiliary equetions, as decired.) As shown in previous cections on the
basic derivation of the hodograph equations, time in explicit form is absent
from the basic equations of motion in every term except the mass variation.
At this point, 1t is reaconable to ask whether the mass variation, as provided
in the equations of motion, can ecver be other than dependent upon time
explicitly.

Considering the propulsion control only, i.c., as an open-1locp or reg-
wlator function solely, the mass-variation is obviously a time-dependent
function. However, if this fuel flow control or basic servo element is used
in a closed-loop mode of operation, the mass-variation will become a function
of the error-sensed variable, since the time-dependency is then only due to
servomechanism lags. If the closed-loop operation is satisfactory, such
lags will be negligible in effect. It should be clear that the fuel Tlow
control will always be used as a servo clement in closed-loop operation. Con-
sequently, the following general statement on space system synthesis and de-
slgn is proposed: The inner closed-loop (or loops) of which the fuel flow
control is a servo element may be designed so that mass-variation is & func-
tion of space, velocity, or acceleration coordinates rather than time. Then
the hodograph equations of motion for the space vehicle would be independent
of time as an explicit variable, enabling the use of differential geometry
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solution for trajectory classes rather than analytic integration for solution.

This suggested trajectory synthesis and analysis procedure 1s a sharp
break with traditional trajectory study practice currently in common use.
Although closed-loop system theory has beccme a dominant factor in space .
system technology for hardware design, 1ts influence upon mission ana}y51s
and trajectory design has been quite limited and only recently recognized.

The principal influence hac been the application of filter theory (e.g.,

Ref. o4) and dynamic programaing (e.g., Ref. 25) "o these problems. Much

of this work has been carried out by Ames Research Center (NASA) and the

Rand Corpcration. The proposed change in the treatment of the vehicle mass-
variation is deterministic, enabiing the use of all prior trajectory synthesis
and analysis techniques but with widely extended possibilities for analytic
solution. The research staff on the present study considers this proposal

as feasible and realizatle from the viewpoint of mechanization technology,

as well as desirable and promising from the viewpoint of extension and com-
pletion of trajectory sclutions, and understanding of the properties of classes
of powered trajectories.

Aside from the afcrementioned application of filter theory and dynamic
programming, the direct use of optimization programs (e.g., by use of the
variational calculus) to study trajectory classes, comprises a break with
traditional trajectory cynthesls and analysis practice. Such trajectory study
is at least as rectrictive or limiting on design practice as the provosed
treatment of the mass-variation.

Before proceeuing to the final section of this research study report,
some brief comments upon the lunar landing problem are timely. The desired
analytic (or closed-form) solution was not obtained by the research staff.
However, the transformed zquations of motion are so relatively simple in form
that future solution might be attained by their use, upon subsequent study
by more skillful mathernticians or analysts.

It should be noted that the specified terminal condition for zero
velocity at a finite distance from the attracting center of the celestial
body defines a singular pcint in the field of solution for the hodograph
transformation. That is, this condition defines a point on an orbit which
passes, in the theoretical sense, through the attracting center of the
celestial body. Such orbits comprise singular solutions in the hodograph
transformation and equations. Consequently, machine computation accuracy
degenerates within the neighborhood of this terminal point; i.e., the
endpoint hodograph solution is indeterminate. The hodograph transformation
regularizes all orbits with singular points at infinite distances from the
attracting center. However, 1t is interesting to note that the valid region
of machine solution for the hodcgraph equations extends quite close to the
singular endpoint (see Section VII-D). This computational validity is
especially interesting for possible re-entry studies by use of hodograph
equations, as proposed in Section IX. Since computational accuracy can be
attained with the hodograph equations for relatively small magnitudes of
velocity vector, such re-entry study is feasible.
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IX. RECOMMENDED AREAS OF FUTURE RESEARCH STUDY

It has been noted that this research study comprises an initial investi-
gation of the acceleration hodograph transformation. The basic general
equations have been defined, the orbital (i.e., ballistic) acceleration
hodograph studied, and one problem application for an arbitrarily specified
thrust function has provided hodograph equations of motion for a vehicle
subject to that thrust function.

The transformation theory is clearly far more extensive than studied to
date, while application techniques have not been treated comprehensively due
to broad scope. Also, in the course of study, many promising areas for future
study have become apparent, and are presented here for consideration. Assuming
that the initial study results and the proposed study areas appear promising
for potential advancement of two-body space trajectory synthesis and analysis
techniques, the formulation of subsequent studv objectives may be aided by
these study suggestions.

Future study may be sultably classified as an extension of the application
scope, investigation of basic characteristics of the application equations,
program mechanization techniques, and the lunar landing problem. The major
topics extending the application scope are

1. Formulation of the three-dimensional equations

2. Analytical trcatment of oblateness effects

3. Development of the hodograph equations for motion in
molecular or sub-molecular media

The major topics for investigation of basic characteristics of the application
equations are

1. Development ol realizable and useful mass-variation functions
2. Development of hodograph generation techniques by use
of the differential geometry
3. Energy relations
L. Time relations
5. Evaluation techniques for impulsive vs continuous thrust
functions

Program mechanization includes

. Computation

. Optimization

. Situation displays

. Abort emergency command and control

Fw
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A. TExtension of the Application Scope

This initial study has formulated the hodograph equations of motion in
two-dimensional space. Obviously, its extension to motion in three-dimensional
space will enable treatment of complete space trajectory problems. Just as
the twc-dimensional formulation of the velocity transformation equations
(Ref. 2, 8) has been effectively and simply extended to three-dimensional
space (Ref. 9), the three-dimensional formulation of the acceleration trans-
formation equations 1is seen as a clear and direct analytical procedure. As
noted in Section V, the three-dimensional vector notation (Ref. 18) is a
most effective Tormulation method. For example, it can be showvn that

oecx| B 47 =

where R and C are hodograph vectors directed as defined in the Nomenclature.
As part of this study extension, it is suggested that the contents of
Reference 26 might be reviewed and correlated with the formilation results.

The hodograph equations are valid for the potential t'ield of a regular,
spherical celestial body. That is, the higher order terms of a spherical
harmonic expansion for the gravitational potential field have been neglected.
The triaxiality terms which more accurately describe the real physical prob-
lem will affect the solutions, especially for the synthesis and analysis of
long-term trajectories (e.g., of time duration greater than one nominal
orbital period). TFor most trajectory problems other than the long-term orbit
maintenance required for communication satellites, the oblateness effects
are generally sufficient for synthesis and analysis consideration. That is,
consideration of the cpherical harmonics due to the first order difference
from the regular sphere (or oblate spheroid) are generally adequate for the
additional accuracy which may be required for long-term trajectories. Then
the J-term of the harmonic expansion

=||=z=-cos |+ -
r) 3 77)
accounts for the oblateness effects upon the line of apsides (W) and the line
of nodes ({)). As shown by Blituer, Weisfeld, and Wheelon Ref. 27-29), the

apsidal and nodal line rotations due to oblateness, in cach orbital period
(or revolution) are closely approximated by

o]

2
= e _5..2; (123)
A‘YJ-ZTFJ [G'Ti_—_e?)'] (2 2sll't |)
2
AQJ=2'rrJ[—re—ﬂ coS | (124)

ad (1—e2
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By use of Equations 123 and 12k, and using a time average for the apsidal and
nodal line rotations

\i’ A\I’J =J (2 ) (1254)
=Jn - = sini
J7T 27r/n (1 ez}
. AQJ e 2
= =Jn| = i (1264)
0 21T/n n[c - ’] cos i
However, %
%R (45)
m
snd 0.(1_e2} - L% (49)
C
so that
V= I #R (z 3 sirf | (1057)
L R ,
SZJ- VE; '—Ir— cos 1|, (126B)

Consequently, eithe:r the hodograph transformation or the equations of motion
themselves may be modified to account for the oblateness effects, if required.
First, in the original formulation of the hodograph parameters (see Section
V), the J-term of the potential function may be included in the energy
equation. Hence, modified hodograph parameters may be developed. As an
alternative, the major apparent effects upon the instantaneous orbital paramcters,
as described by Equations 125B and 126B, may be treated ac perturbations.
That is, in the vector equation

r =‘Aor—Cl))T +

Aap,

T, (56B)

the apsidal and nodal line rotations due to oblateness effects would be seen

as part of the applied accelerations (/\q, ANa ). Either approach

\d
appears feasible and tractable for synthe51s and analysis. However, at this
bime, the latter approach appears more amenable to mathematical treatment.

Aside from the simplifed form of the assumed potential field, the basic

energy equation and the resultant equations of motion are valid only for
motion in a vacuum, or nonresistive medium. However, other media may be
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encountered which could cause drag forces upon a space vehicle. The gaseous
atmosphere of a planet obviously constitutes such a medium. Also, clouds

of microparticles may be encountered in interplanetary space. In both cases,
the medium is principally composed of molecular matter. It is interesting
to note that Jacobi (Ref. 30) speculated upon and priefly treated this
possibility. However, ionic or submolecular clouds may be even more COIION,
or significant to vehicle motion, than microparticle clouds. Consequently,
analytical treatment of such forces, which result from passage through a
resistive medium, by the hodograph equations could be of great potential use.
In this respect, the work of Reference 31 is noted as an early attempt to
interpret the atmospheric re-entry problem in terms of the instantaneous
hedograph.

In general, the resistive forces are a function of the relative velocity
between vehicle and medium. Consequently, treatment of these forces in the
original basic equations or as perturbation forces (see Eq. 56B) can be
expected to provide promising equations of motion for solution and/or
computation. Briefly, consider the following functional relation which
approximates the terrestrial atmospheric re-entry forces:

f=Kq O v (127)

where

G‘zO‘oexp(-Cz.r) . (128)

Itgis clear that the force varies directly as the product of velocity squared
(v*). and a transcendental function of the normal velocity (Vn) since the
exponential term of Equation 128 is related to the normal velocity by Eguation
36. Since the difficulties of analysis with the resultant equations cannot be
evaluated without further study, such investigation is recommended in view

of the potential value for advanced re-entry problems. Note that the func-
tional relation for forces due to interplanetary resistive media will probably
not be related to position coordinates, but only to velocity coordinates
directly.

B. Investigation of Basic Characteristics of Hodograph Equations

It has previously been noted that mass-variation functions of space,
velocity, or acceleration coordinates, rather than of time explicitly, would
enable the possible generation of the powered trajectory hodograph directly,
without analytic integration of the hodograph equations. It is recommended
that realizable and useful mass-variation functions of space, velocity, or
acceleration coordinates be postulated and studied. This investigation should

be conducted concurrently with the development of hodograph generation tech-
niques.
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The generation of a powered trajectory hodograph may be obtained by formal
application of the differential geometry. It is suggested that such generation
techniques be developed. As part of such study, the oblateness effects due to
potential field harmonics as well as drag forces of a resistive medium, might
be considered.

The powered trajectory hodograph should enable the derivation of energy
relations for the instantaneous thrust energy and orbital energy, as a function
of coordinates in the hodograph plane. With such energy relations, the relative
merits of various trajectories and thrust programs could be readily evaluated.
In addition, the orbital energy diagram (Ref. 4) may prove useful in such
study.

For direct utility, any solution generated in the hodograph plane or upcn
analytic integration should ultimately be expressed in time explicitly. Con-
sequently, as originally proposed, the time relationships should be determined.

It is clear that an infinite choice of thrust programs is available to
provide a realizable trajectory between specified sets of endpoint conditions.
In general, the relative merits of thrust programs for essentially impulsive
(or high level) thrust vs essentially continuous (or low level) thrust are not
well understood. While specified optimization of fuel and time conctralints
permits some statements about specific performance characteristics to be made,
relative evaluation criteria are generally unavailable, especially when
optimization criteria are not specified. If the previously noted development
of hodograph generation techniques, and energy and time re¢lations were sub-
stantially successful, then the development of such evaluation criteria would
be apparent. Consequently, the development of such criteria is recommended,
upon prior satisfactorv completion of t.e above proposed studies.

C. Program Mechanization

The basic nature of the hodograph equations enables the trajectory syn-
thesis and analysis to be treated completely in the hodograph plane, both
for powered and ballistic flight, without the need for analytic integration
(excepting possible mass-variation functions of time). Consequently, it has
been apparent that trajectory computation for machine solution might be simpler
and faster with at least equivalent accuracy. The relatively sirmple computation
programming of the lunar landing problem showed that programming was much
simpler, and the effective use of diagnostic techniques was considerably
easier. Consequently, the use of the hodograph equations for a real space system
problem should be considered.

For example, the set of conventional equations used in the Gemini com-
putation program could be transformed into hodograph equations analytically,
and subsequently programmed. The two programs could then be studied and eval-
uated from the viewpoint of programming ease and reliability, computation
speed and accuracy, and amenability to diagnostic procedures.
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As = result of the extensive use of machine computation for problem
solution of space trajectories, the development of machine techniques of
optimization (e.g., with the variational calculus or dynamic programming) has
become quite attractive. It became apparent, in the velocity hodograph
studies, that many optimizations are possible with the hodograph equations,
in analytic form. Consequently, it is recommended that optimization criteria
and solutions be studied, as applied to the hodograph equations of motion.

In complex computation programs, effective display of the most pertinent
characteristics for effective monitoring is becoming increasingly important
and critical. The geometric interpretation of hodograph relations, and the
algebraic form of the possible transformations between space, velocity, and
acceleration coordinates indicate that the hodograph equations are extremely
suitable for direct data readout and situation displays. The broad cholce
of characteristic data available from the transformations provides considerable
design freedom for the human engineering and display system designers.

If thrust should unexpectedly be shut down due to failure or emergency
conditions, the hodograph equations provide the resultant ballistic trajectory
directly, without auxiliary computation or modification. Also, the simpler
computation as well as the possibility of analytic solutions indicates that
real-time (or shorter) solution for the powered or ballistic trajectory is
feasible. Consequently, emergency command and control by a ground control
center or an onboard astronaut may be very effectively mechanized by the
hodograph equations.

It is suggested that both system design areas of situation displays and

emergency command and control be studied for posiible application of the
hodograph equations and application techniques.

D. Lunar Landing Problem

Further work on possible analytic solution for the lunar landing problem
appears quite attractive, especially if this thrust program is of continuing
real interest. As noted in the section on machine solution, new approaches
which have not been exploited due to lack of research time have become avail-
able. In any case, the possible interpretation of the trajectory dynamics from
the energy viewpoint appears promising for potential extension of the appli-
cation techniques. That is, the theory developed for the nonlinear mechanics
may lead to further understanding or solutions, upon its application to a
given problem such as the lunar landing problem formulated by the hodograph
equations of motion.
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XIT. NOMENCLATURE
scalar of the total acceleration vector O
semimajor axis of the instantaneous orbit
unit-mass acceleration due to applied thrust
scalar hodograph parameter of an instantaneous orbit
hodograph vector of an instantaneous orbit
(=7 xV) always directed normal to the instantaneous
orbital plane
coefficients for the polar equation of the limagon
system energy of orbital point-mass motion
eccentricity of the instantaneous orbit
scalar of the total force vector‘?

scalar of the force vector f, e to thrust only

incidence angle between the orbital plane and
the equatorial plane of the celestial body

orthogonal unit vectors of a rotating polar
coordinate system in one plane

first coupling constant of the spherical harmonic
expansion for the gravitational potential of the
celestial body, described as an oblate spheroid
constant

constant mass-flow sate

Lagrangian

total angular momentum of the vehicle center-of-
mass

system mass
mean angular velocity of the vehicle in orbit
proint in space

semilatus rectum of the instantaneous orbit
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cC

scalar of the radius vector of the limagon
generalized force component
generalized coordinate

scalar hodograph parameter of an instantaneous
orbit

hodograph vector of an instantaneous orbit, always
directed parallel to the instantaneous apsidal line in

the perigeal sense

scalar of the radius vector T originating at the center
of the celestial body

radius of curvature

scalar of the path vector S

scalar of the thrust vector T

time

kinetic energy of orbital point-mass motion

slope of the tangent line to the acceleration hodograph
at the given point of orbit

scalar potential function of the celestial body
scalar of the vehicle system veloclty vector V
exhaust gas velocity

velocity vector component normal to the radius vector
in the instantaneous orbital plane

(positive sense toward the orbital flight direction)

velocity vector component along the radius vector
(positive sense outward from the celestial body center)

velocity-dependent potential function
rectilinear coordinates fixed in inertial space
density coefficient

angle between the hodograph Vpn- axis and the hodograph
total velocity
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AV

angle between the hodograph VYn- axis and the
hodograph radius R +tu the orbital body point
on the hodograph

latitude angle from the equatorial plane of the
celestial body

angle between the total velocity wvector and the
local horizon in the orbital plane

angle between the tangent line to a point on the
acceleration hodograph, and the normal line to

the radius vector at that point

parametric variable

gravitational constant for the celestial boay

direction of radius vector T

angle between the radius vector (whose direction only is
defined by the line P‘ ) and an arbitrary reference line
fixed in inertial space

ccalar of the total acceleration of an orbital vehicle

atmospheric density function

angle between tanger“ line to a point on the acceleration
hodograph and the abscissa axis

true anomaly of the vehicle in instantaneous orbit
apsidal line of the instuntaneous orbit at perigee
rotation of the apsidal line of an orbit

angle between the radius to a point on the acceleration
limacon and the tangent line at that point {_ ar_ 9’)
2

rotation of the ncdal line of an orbit

Superscripts

per unit mass of the ( ) - term
vector quantity
first time derivative of the ( ) - term

second time derivation of the ( ) - term
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X,y
U,n

Subscripts
ballistic

circular

drag force

celestial body surface
final

initial

due to the coupling constant J of the harmonic
expansion of the potential field of an oblate spheroid

mass

reference value

powered

radial

rectilinear coordinates fixed in inertial space
normal

derivative with respect to qb
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APPENDIX A
PROBLEM STATEMENT FOR LUNAR LANDING TRAJECTORY

The lunar landing trajectory which comprises the specified application
problem for this research study is defined by the following thrust program,
initial and final conditions, as presented by NASA.

A, Thrust Program

The vector direction of thrust is always in direct opposition (i.e., at
180 degrees) to the velocity vector. The thrust magnitude is constant, and
is given together with relevant problem constants, as follows:
1. T = 6000 pounds
2. Specific impulse = 305 seconds
3. Lunar radius = 5,702,000 feet

4., Lunar surface gravity = 5.32 feet per second?

5. Terrestrial surface gravity = 32.17 feet per second2

B. Initial Conditions

The vehicle is at the perigee of an elliptical orbit when thrust incep-
tion occurs, defined by the following nominal initial data:

1. r = o0
2. rl> = 5674 feet per second
3. m = 384.5 slugs

L, Altitude = 50,000 feet

50 1 = 0

C. Terminal Conditions

The trajectory is terminated when the velocity becomes zero. At that
time, the thrust would be shut down. The nominal terminal conditions obtained
with machine solution of the classical equations of motion are as follows:
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1. r = 0
2.ry = 0O

211.4 slugs

n

3. m
4, Altitude = S5L67 feet
5. ¥+ = 283 seconds

For comparative evaluation of the machine solutions with a classical
equation program and with a hodograph equation program, the following equa-
tions and endpoint conditions were used by the UA staff for programming and
machine solution:

1. Classical Equstions
m=m; +mt

.. F
2ip+ry=—X

where

V=V 2+(rl7)2

Initial Conditions:

r =0

r¥ = 5673.63 feet per second
r =5.752 x 100 feet

m; = 384,507 slugs

I

-0.6115055 slugs per second

172.968 x 1012 feet3 per second®

4% 3
il

6000 pounds



Terminal Conditions:

r =0

ry =0
2. Hodograph Equations
m=m+ mt
. . . . Fr
Rsnncf)+2Csm q5cosq5= ™
F
. . .2 =_Z
C+Rcos¢-—2Csm ¢ p
where C+Rcos¢
FV=—T —

ot

V=VCc24R%+ ZCRcoscﬁ

Initial Conditions:

¢ -o

C = 5300.75697 feet per second
R = 373.24303 feet per second
m; = 384%.507 slugs

m = -0.6115055 slugs per second
T = 6000 pounds

Terminal Conditions:

Rsin q'> =0

C+Rcosch 0
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APPENDIX B
THE ACCELERATION LIMAGON

The limagon, a specilal plane curve ascribed principally to Pascal (Ref.
19 and 20), can be defined by the following polar equation:

P=c+d cosqS (A-1)

or by the following parametric equations:
x=0cos)\+%c052)\ (A-2)
y=¢ sin)\-l-%sinz A (A-3)

Given a circle of radius :%% , the limagon may be generated by the geometric
construction in Figurc B-1.€ Select a point on the Circle (OAD) as the origin
0 of a rectilinear coordinate system (X-Y), with one axis along a diameter
(0D). Pass a line through the origin at the required angle . From the
resulting line intersection A with the circle, obtain points B and C, each

at a distance = c¢c. The points B and C comprise two points of the limagonm,
the complete figure of which is generated for all pnssible values of with
specified ¢ and d.

The geometric form of the limagon figure varies with the relative values
of the constants ¢ and d, as shown in Figure B-2. The limagon has many inter-
esting properties, some directly useful in opties. Although these properties
of the limasgon will not be presented here, it is notedl that the complex
variable transformation w = 2° makes circles lz-bl = ¢, (b,c real), in the
z-plane correspond to limagons in the w=-plane,

Some characteristic properties of the acceleration limagon (Equation 6k)
have been derived and presented in Table B-I, together with basic definitions.
These properties are defined as shown ir Figure B-3.

lPhillips, E.G., "Functions of a Complex Variable", Interscience Publishers
(1946), pp. 61-62.
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Fig. B-1 Generation of the Limagon




UodewIT 9yl Jo swiog SnotIep z-g *HB13

be > -q

(pTOTPI®O ‘*9°T) pz=0

°0

p2<o

°d

-
N

i/

N

81



TABLE B-I
EQUATIONS FNR THE ACCELERATION LIMAQON

BASIC DEFINITIONS
2
pP= (c+dcosq5) (A-1)
2

vhere _ C
Cc

4.
Cc

o|o

=e

CHARACTERISTIC PROPERTIES

c+d coscf) _ 1+ecoscf>

ton =~ 2dsing  2esing

(A-5)

3dsin2<f>— (d+ccos cf>] ) 3esin® Qb‘ (e+cos¢] (A-6)

sinqb(c+3dcos C}S) sinq5(1+3ecos c;b)

ton T =

s 2, \ T2 )
E‘E:[P(Pﬂd S'"¢J] (a-7)
_ 3 [(“dz‘l'cz)-lecdcoscj)—3d2 cosa¢]%

=P {6d2+ 2 2 2 (8-8)
c )+4cdcosq§— 3d cos qS
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Fig. B-3 Characteristic Properties of the Acceleration Limagon
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